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Frequency estimation from arbitrary time samples
Kaushik Mahata and Md Mashud Hyder

Abstract—We consider the problem of estimating the line
spectrum of a signal from finitely many time domain samples.
We present a gridless algorithm for solving the total variation
minimization approach associated with this problem. Unlike
the related previous results, our method does not require the
sampling instants to lie on an uniform grid. The resulting
algorithm is a semidefinite program, structurally similar to some
of the existing methods. One key observation made in our
analysis also allows us to develop a gridless version of the SPICE
algorithm. The simulation results demonstrate the superiority of
these in performance compared to other related methods.

Index Terms—Prolate Spheroidal Wave Functions, atomic
norm, total variation, line spectrum, sparse recovery.

I. INTRODUCTION

A. Problem statement and the main contribution

Let R and C be the set of all real and complex numbers,
respectively. We view a vector v in Cn (or Rn) as a map from
{1, 2, . . . , n} to C (or R). The k-th component of v maps k to
C, and is denoted by v(k). We consider the following problem:

Given F > 0, a data vector y ∈ CM , and a set of M
sampling instants {t̄j}Mj=1, t̄j < t̄j+1, find out K numbers
{f̄k}Kk=1in [−F/2, F/2] and {ak}Kk=1 in C such that

y(j) =
K∑

k=1

ake
i2πf̄k t̄j , j = 1, 2, . . . ,M. (1)

Without any loss of generality we assume t̄1 = 0. In
Appendix A we show that there always exists a solution to
(1) with K = M . In practice, we often prefer K as small as
possible. However, a solution with K < M may not exist. For
example, if M = 2 and y ∈ C2 is such that |y(1)| ̸= |y(2)|,
then there is no solution to (1) for K = 1. By scaling

fk = f̄k/F, tj = F t̄j ,

so that fk ∈ [−1/2, 1/2], we can rewrite (1) as

y(j) =
K∑

k=1

ake
i2πfktj , j = 1, 2, . . . ,M. (2)

Note that tj and fk are dimensionless quantities. In the
following we focus on finding K as small as possible, and
{ak, fk}Kk=1 satisfying (2). From the solution one may readily
find {f̄k}Kk=1.

We view this as a sparse function recovery problem and
present a gridless algorithm for total variation minimization
approach (TVMA) [1], [2]. TVMA views (2) as

y(j) =

∫ 1/2

−1/2

ei2πftj ds(f), j = 1, 2, . . . ,M, (3)
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where

s(f) =
K∑

k=1

aku(f − fk), (4)

with u denoting the unit step function, i.e., u(f) = 1 if f ≥
0, and u(f) = 0 if f < 0. Given y there are uncountably
infinitely many s consistent with (3). TVMA picks the one
with the smallest total variation. Our main result is to show
that TVMA is equivalent to solving a semidefinite program
given in Theorem 1, which uses the Prolate Spheroidal Wave
Functions (PSWFs) [3], [4]. Let

c = πtM ,

and L2 be the set of all square integrable functions on
[−1/2, 1/2]. PSWFs used here are the eigenfunctions of the
linear map E : L2 → L2 such that for any r ∈ L2

(Er)(τ) =
∫ 1

−1

eicξτ r(ξ) dξ, ∀τ ∈ [−1, 1]. (5)

Thus for any j, the j th PSWF φj satisfies

Eφj = λjφj . (6)

Here λj is the j-th eigenvalue of E in order: |λj | > |λj+1|, ∀j
where |λj | denotes the absolute value of λj . In particular, |λj |
falls off to zero rapidly with increasing j beyond 2c/π [5]. Let
ϵ be the working precision of the underlying computational
platform. In the sequel d is such that |λj | < ϵ for all j > 2d.
Also A∗ denotes the conjugate transpose of A, while Aᵀ is
the transpose of A. For a matrix A, A ≽ 0 means that A is
positive semidefinite. IM denotes an M ×M identity matrix
and 0d×1 be a d× 1 zero vector. Our main result is:

Theorem 1. Let e be the first column of IM , J1 =
[ Id 0d×1 ], J2 = [ 0d×1 Id ], θ0 = c/d. Let
Φ ∈ R(2d+1)×(2d+1) and hkl ∈ R2d+1 be defined as

Φkj = φj−1((k − d− 1)/d), hkl(j) = φj−1((tk − tl)/tM ).

Then TVMA is equivalent of solving

minimize
w,ν0, ν1,...,νd

(w + e∗Qe)/2

subject to

[
w y∗

y Q

]
≽ 0,

Qjl = h
ᵀ
jlΦ

−1[ ν∗d · · · ν∗1 ν0 ν1 · · · νd ]ᵀ,

T :=


ν0 ν∗1 · · · ν∗d

ν1 ν0
. . .

...
...

. . .
. . . ν∗1

νd · · · ν1 ν0

 ≽ 0,

W(T) := tan2(θ0/2)(J1 + J2) T (J1 + J2)
∗

− (J1 − J2) T (J1 − J2)
∗ ≽ 0,

w, ν0 ∈ R, ν1, . . . , νd ∈ C.
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For evaluating PSWFs we can use the algorithm outlined
in [6, Section 4], which is similar to the classical Bouwkamp
method [7]. The optimization problem outlined above is solved
in the variables {νk}dk=0 and w. Among these, w and ν0 are
real-valued, and the rest are complex-valued. Q is linear in
{νk}dk=0. In Appendix D we show that Q is Hermitian. Hence
the above is a semidefinite programming (SDP) problem with
two linear matrix inequality constraints. Note that e∗Qe =
Q11.

The algorithm presented in Theorem 1 is an approximate
algorithm, where the approximation error can be reduced
below some target level by choosing d properly. The rapid rate
of decay of |λj | with j beyond 2c/π allows us to maintain the
approximation error below the precision of the computational
platform (or the noise floor when the data are noisy) without
having to increase d much above c/π. The typical complexity
of this SDP is O(d3), and the worst case complexity is O(d6).

The optimal value T∗ of T leads to the solution (2). The
rank of T∗ is K. T∗ admits a Vandermonde decomposition

T∗ =
K∑

k=1

|ak| ω(2πfktM/d) ω∗(2πfktM/d), (7)

where ω(θ) := [ 1 e−iθ · · · e−idθ ]∗. To find {ak, fk}Kk=1,
we write the individual elements of (7):

νl∗ =

K∑
k=1

|ak|zlk, zk = ei2πfktM/d, (8)

where νl∗ denotes the optimal value of νl. When T∗ is
singular, (8) admits unique solutions for {ak, fk}Kk=1, and
these can be computed from {νl∗}dl=0 via Proney’s method [8],
[9, Appendix A]. Almost always T∗ is singular to the working
precision. In some rare cases the TVMA solution is non-
unique. Then T∗ is non-singular. Previous authors on TVMA
have discussed some procedures of computing a desirable
solution from a non-singular T∗. For instance, if we adopt
the strategy in [9] then we need to apply Proney’s method on
T∗ − δId+1, where δ is the smallest eigenvalue of T∗.

B. Contributions relative to the literature

Line spectral analysis problem with regularly time-spaced
samples is extensively researched [8]. Common classical meth-
ods like periodogram, MUSIC, etc developed for uniformly
sampled data need modifications for irregular case [10]. How-
ever, as we show later, these modified algorithms exhibit
significantly worse performance than more recent algorithms
like the iterative adaptive approach (IAA) [11], [12] and
the sparse iterative covariance-based estimation (SPICE) [13],
[14]. IAA is a nonparametric algorithm, while SPICE is a
semiparametric method. Among these SPICE being a convex
optimization approach, is more popular as the global conver-
gence is not guaranteed for IAA. SPICE can also estimate the
noise variance. Apart from SPICE and IAA, there are other
sparse recovery methods [15]–[17]. These methods discretize
the continuous frequency domain into finite set of grid points,
and apply some discrete domain sparse recovery methods. The

discretize approach has several drawbacks. To achieve high
resolution one requires a very fine grid consisting of a large
number of points, resulting large computational complexity.
Also, it is difficult to predict how the reconstruction algorithm
will behave when true frequencies do not lie on the grid (which
is true almost always). Several grid refinement methods have
been proposed to deal with these problems [15], [18]–[21].

Recently several gridless continuous-domain methods have
appeared [1], [2], [9], [22]–[26]. The pioneering contribution
[1] shows how the spike train estimation problem from linear
measurements can be solved exactly by solving a semidefinite
program. In addition, the authors of [1] derive the conditions
under which this super resolution recovery is possible. This has
motivated several variants [2], [9], [22], [23], [25], [26]. These
methods can allow missing data [9], [26], provide confidence
bounds on the parameter estimates in presence of noise [9],
[22], and give a concrete way of choosing the regularization
hyper-parameter in the atomic norm regularization problem
[22]. Authors of [9] have also shown how a gridless SPICE
[13] can be formulated. Further connection with maximum
likelihood and SPICE is explored in [27].

All above gridless methods need the sampling instants to lie
on a uniform grid. In other words, tj in (2) must be integer
valued. This may not hold in many practical applications
due to experimental conditions. For instance, in astrophysics
specific observational conditions make the sampling instants
rather arbitrary [28], [29]. Seismic data processing is another
example [30]. Due to different physical conditions involved
in seismic surveys, sensors locations are often placed off the
regular grid. Therefore, tj in (2) can be any real number.
To the best of our knowledge Theorem 1 is the first gridless
spectral estimation method for such cases. The complexity of
the resulting algorithm in Theorem 1 is of the same order
as those derived for regular sampling grid. We noted that d
is slightly above c/π = tM , which is the time-bandwidth
product for the problem. Hence the complexity of the proposed
algorithm is of the order of the cube of the time-bandwidth
product, which is similar to the previous methods.

Like basis pursuit denoising (BPDN) [31] it is straight-
forward to extend Theorem 1 to handle noisy data, and the
related theory readily extends to gridless implementation of
SPICE for arbitrary sampling situation. In this way the BPDN
variation of our algorithm can use the output of gridless SPICE
as initializer. The benefit of this hybrid strategy helps solving
the frequency splitting problem1 of SPICE.

II. THEORY

A. Minimization of total variation
Given f ∈ [−1/2, 1/2], let γ(f) be such that

γ(f) = [ ei2πft1 ei2πft2 · · · ei2πftM ]ᵀ.

Let αk = |ak|, ϕk = ak/αk, so that |ϕk| = 1. Write (2) as

y =
K∑

k=1

γ(fk)ϕkαk, (9)

1Many grid-based sparse recovery methods often produce multiple fre-
quency components around the actual frequency locations. This phenomenon
has been termed as the frequency splitting problem [9].
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meaning that our problem is to express y as a positive linear
combination of K distinct atoms in the dictionary

A = {γ(f)ϕ : f ∈ [−1/2, 1/2], ϕ ∈ C, |ϕ| = 1}.

Finding the atomic decomposition (9) with smallest K is very
hard. TVMA has been advocated as the most suitable convex
relaxation [32], where one evaluates the atomic one-norm of
y with respect to A [1], [2]:

||y||A = inf
∑
k

αk,

st y =
∑
k

γ(fk)ϕkαk,

fk ∈ [−1/2, 1/2], αk > 0, |ϕk| = 1.

(10)

The following result is the first step towards a tractable
finite dimensional characterization of (10). It is a bit more
general than some analogous results presented before. The
generalization is in the sense that Lemma 1 holds for any
general function γ whose first component is unimodular.

Lemma 1. Let H be the set of all M×M Hermitian matrices,
and Γ : [−1/2, 1/2] → H be such that Γ(f) = γ(f)γ∗(f).
Let K be closed conic hull of the set {Γ(f) ∈ H : f ∈
[−1/2, 1/2]}. Then ||y||A is the optimum value of

minimize
w∈R, Q∈K

(w + e∗Qe)/2

subject to

[
w y∗

y Q

]
≽ 0. (11)

In addition if an atomic decomposition y =
∑

k γ(f̊k)ϕ̊kα̊k

is such that ||y||A =
∑

k α̊k, then w =
∑

k α̊k, Q =∑
k α̊kΓ(f̊k) is a solution to (11).
Conversely, if Q =

∑
k α̊kΓ(f̊k) is a solution to (11) for

some α̊k > 0, then the corresponding optimum value of w is∑
k α̊k = ||y||A, and there are unimodular complex numbers

ϕ̊k such that y =
∑

k γ(f̊k)ϕ̊kα̊k.

The proof appears in Appendix B. Lemma 1 allows us
to compute a solution to (10) by solving a more convenient
approach (11). However, a tractable algorithm for solving (11)
needs a finite parameterization K. This is addressed next. We
start with a generic characterization of K [33]: Q ∈ K if and
only if there is positive measure µ on [−1/2, 1/2] such that

Q =

∫ 1/2

−1/2

Γ(f) dµ(f). (12)

This characterization makes (11) an optimization problem in
µ. But it is not numerically tractable to ‘parameterize’ (11) by
µ. Nevertheless, let us define µ̂(t) such that

µ̂(t) =

∫ 1/2

−1/2

ei2πft dµ(f).

Since µ is supported on [−1/2, 1/2], the corresponding time
domain signal µ̂(t) is [−1/2, 1/2] bandlimited. Now from (12)
and the definition of Γ note that

[Q]jl =

∫ 1/2

−1/2

ei2πf(tj−tl) dµ(f) = µ̂(tj − tl). (13)

In other words, the elements of Q are the samples of a
[−1/2, 1/2] bandlimited signal, and these observations are
all confined within a time window [−tM , tM ]. This is a
classical result that the space of [−1/2, 1/2] bandlimited
signals captured within a time window [−tM , tM ] is of a finite
dimension, and therefore can be parameterized via a finite
number of parameters. The results in [3], [5] establish that
the most powerful basis of this space are the PSWFs. The
following lemma uses these observations to accomplish our
goal, where PSWFs play a central role.

Lemma 2. Q ∈ K if and only if there exists ν0 ∈ R and
νk ∈ C, k = 1, . . . , d such that T ≽ 0, W(T) ≽ 0 satisfying

Qjl = h
ᵀ
jlΦ

−1[ ν∗d · · · ν∗1 ν0 ν1 · · · νd ]ᵀ,

where hjl,Φ,T and W(T) are defined in the statement of
Theorem 1. In addition, if there is a singular measure

µ(f) =
K∑

k=1

αku(f − fk), K ≤ d, |αk| > 0, (14)

satisfying (12), then it is unique, and T is singular with the
Vandermonde decomposition

T =

K∑
k=1

αk ω(2πfktM/d) ω∗(2πfktM/d).

The proof appears in Appendix C. Combining Lemma 1
and Lemma 2 we note that Theorem 1 gives an algorithm
for solving (10). This yields the optimal solution T∗. TVMA
gets a sparse solution if T∗ is rank deficient, and in that case
its Vandermonde decomposition gives {αk}Kk=1 and {fk}Kk=1,
where K is the rank of T∗. However, (12) and (14) imply that
the optimal solution Q∗ =

∑K
k=1 αkΓ(fk). Then by Lemma 2

we know that there are unimodular complex numbers {ϕk}Kk=1

satisfying atomic decomposition y =
∑

k γ(fk)ϕkαk. To find
{ϕk}Kk=1 we solve this linear system. This also holds while
working with noisy data where we estimate y from the data,
see (15) below.

B. TVMA in noisy environment and gridless SPICE

In practice, we observe a noise corrupted version ŷ = y+n
of y, where n is additive noise with covariance matrix σ2I.
We employ basis pursuit denoising (BPDN) [31] to handle
noisy data which estimates y as well. This is done by adding
a regularization term in the cost function:

minimize
w∈R, Q∈K,y

(w + e∗Qe) +
1

ϱ
∥ŷ − y∥22 (15)

subject to

[
w y∗

y Q

]
≽ 0

where ∥x∥2 denotes the 2-norm of vector x and ϱ is a noise
variance dependent parameter to be chosen by the user. For
best results one should set ϱ = σ

√
M ln(tM ) [9], [22].

However, σ is unknown in general. In our implementation we
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use SPICE [13], [14] to obtain an estimate of σ, and use that
in (15). SPICE proposes to

minimize
w∈R, θ,δ1,...,δM

wŷ∗ŷ +Tr(R(θ)) +
M∑
k=1

δk

subject to

[
w ŷ∗

ŷ R(θ) +D

]
≽ 0,

D = diag{δ1, δ2, . . . , δM} ≽ 0,

(16)

where R models the covariance matrix of y and parameterized
linearly by a parameter vector θ. Here diag{x} denotes a
diagonal matrix where the vector x is in its diagonal. In its
original formulation SPICE is a grid based approach where
the user chooses a suitably large integer N , and sets up a
frequency grid {f̃k}N−1

k=0 such that f̃k = −1/2 + k/N , and
parameterizes R in terms of θ ∈ RN as

R(θ) =
N−1∑
k=0

θ(k)γ(f̃k)γ
∗(f̃k). (17)

This parameterization is motivated by (9), which implies that
the covariance matrix of y is

∑K
k=1 α

2
kγ(fk)γ

∗(fk). Since
{fk}Kk=1 are unknown at the beginning a grid can be used
as in (17). However, like some other cases [9], we can avoid
the grid. This is because R ∈ K regardless of {fk}Kk=1 and
{αk}Kk=1. This allows us to formulate SPICE using Lemma 2:

minimize
w∈R, R∈K, δ1,δ2,...,δM

wŷ∗ŷ +Tr(R) +

M∑
k=1

δk

subject to

[
w ŷ∗

ŷ R+D

]
≽ 0

D = diag{δ1, δ2, . . . , δM} ≽ 0.

(18)

While solving (18) we use Lemma 2 to parameterize R in
terms of {ν̄k}dk=0 as

Rjl = h
ᵀ
jlΦ

−1[ ν̄∗d · · · ν̄∗1 ν̄0 ν̄1 · · · ν̄d ]ᵀ,

where the Toeplitz matrix

T̄ :=


ν̄0 ν̄∗1 · · · ν̄∗d

ν̄1 ν̄0
. . .

...
...

. . . . . . ν̄∗1
ν̄d · · · ν̄1 ν̄0

 ≽ 0,

and W(T̄) ≽ 0. We call the resulting gridless SPICE al-
gorithm TV motivated SPICE (TVSP). Upon convergence
of TVSP (18), we estimate the noise standard deviation as
1
M

∑M
i=1

√
δi, and use in (15). We call this approach as TVSP

aided Denoising (TVSPDN). TVSP can also supply the initial
estimates of {νk}dk=0 in Theorem 1. The solution to (18) yields
the optimal {ν̄l∗}dl=0 and T̄∗. Typically T̄∗ is singular, and its
rank estimates K. Since R∗ =

∑K
k=1 |a|2kγ(fk)γ∗(fk), by

Lemma 2 we can write individual elements of T̄∗ as

ν̄l∗ =
K∑

k=1

|ak|2zlk, zk = ei2πfktM/d. (19)

Notice that (19) is very similar to (8) with a subtle differ-
ence. In (8) {|ak|}Kk=1 appear, while (19) has {|ak|2}Kk=1.

Nevertheless, we can estimate {|ak|, fk}Kk=1 from {ν̄l∗}dl=0 via
Proney’s method. We can use these estimates in (8) to calculate
the initial values of {νk}dk=0 to be supplied for solving (15).
Supplying initial values close to the final solution results a
quick convergence.

III. SIMULATION RESULTS

In the simulations we compare SPICE [13], TVSP,
TVSPDN, atomic-norm soft thresholding (AST) [9], [22],
maximum likelihood (ML) [34] and enhanced principle-
singular-vector utilization for model analysis (EPUMA) [35].
ML solves a non-convex problem, and its performance de-
pends heavily on the initialization. We often initialize ML
by the root-MUSIC [36] estimate. Both EPUMA and root-
MUSIC need to know K, and the estimates of the signal au-
tocorrelation at integer valued instants 0, 1, 2, 3, . . .. We apply
the interpolation methodology in [10] to estimate the signal
autocorrelation at integers from irregularly sampled data. For
SPICE we discretize the frequency grid into N = 1000 points.
In the simulations, different versions of algorithms are denoted
by

• TVSP: Proposed gridless SPICE.
• TVSPDN: Proposed gridless TVMA where noise vari-

ance is estimated by TVSP.
• TVDN: Proposed gridless TVMA where we use the

actual value of noise variance.
• SP-AST: Atomic-norm soft thresholding (AST) [9], [22]

where noise variance is estimated by TVSP.
• AST: Atomic-norm soft thresholding (AST) [9], [22]

where we use the actual value of noise variance.
• SPICE: Grid based SPICE [13].
• EPUMA: EPUMA [35].
• ML-Root-MUSIC: ML initialized by root-MUSIC [36].

In the simulations we maintain t1 = 0 and tM = 80, while
M < tM . We consider two schemes of generating {tj}M−1

j=2 :

1) Random Sampling on regular grid: {tj}M−1
j=2 are drawn

uniformly at random from the set {1, 2, · · · , 79}, and
we maintain ti ̸= tj ,∀i ̸= j. In this scheme every ti is
integer valued.

2) Arbitrary sampling: Every tj is drawn uniformly at
random from the interval (0, 80), where ti ̸= tj , ∀i ̸= j.

The performance of the algorithms are measured in terms
of mean squared error (MSE) of frequency estimation. To
compute frequency estimation accuracy, we need to obtain
an estimate of K. As noted in [9], [13], SPICE being non-
parametric, generates many noise peaks at low signal-to-noise
ratio (SNR). This makes estimation of K difficult. On the
other hand root-MUSIC and PUMA assumes K is known.
Therefore, for a fair comparison, we follow the procedure
proposed in [14], [37]. We assume K is known. For SPICE,
the K largest peaks of the spectra are used to estimate MSE,
while it corresponds to the largest K components for gridless
algorithms. The SNR is defined as 10 log10(1/σ

2) [9], [38].
The following results are based on 1000 independent Monte-
Carlo simulations.
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Fig. 1: MSE of estimating three frequencies with random sampling on regular grid. (a) MSE of frequency estimation as a
function of SNR. M = 24. (b) MSE of frequency estimation as a function of number of samples. SNR=1.5 dB.
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Fig. 2: MSE of estimating three frequencies with arbitrary sampling. (a) MSE of frequency estimation as a function of SNR.
M = 24. (b) MSE of frequency estimation as a function of number of samples. SNR=1.5 dB.

A. Random sampling on regular grid

We take K = 3, f1 = 0.05 + w1, f2 = 0.351 + w2, f3 =
0.362 + w3, a1 = 0.5eiϕ1 , a2 = eiϕ2 , a3 = eiϕ3 , where
ϕ1, ϕ2, ϕ3 are mutually independent identically and uniformly
distributed in [0, 2π). In addition, w1, w2 and w3 are mu-
tually independent, identically and uniformly distributed in
[−10−3, 10−3]. In Figure-1(a) we plot the MSE as a function
of SNR for M = 24. In Figure 1(b) we plot MSE as a function
of M for 1.5 dB SNR. TVDN, AST and TVSPDN outperform
other methods. TVSP performs similarly to these when M
is smaller. There is a performance difference between AST
and SP-AST. One may conclude that atomic soft thresholding

requires to know the noise variance exactly to perform at its
best. However, SP-AST cost function has a regularization term
like the second term in (15), and the performance of SP-AST
may improve by tuning the weight of regularization term. Note
that EPUMA or ML-Root-MUSIC exhibit poor performance.
We have seen that the performance of ML would improve and
be the best if it is initialized by the output of, e.g., TVSPDN
or TVSP, see below in Section III-C.

B. Arbitrary sampling

Figure 2 shows the simulations results for arbitrary sampling
scenario. As before, We take K = 3, and {ak, fk}Kk=1
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are taken as in Section III-A. TVDN (TVMA with perfect
knowledge of σ2) outperforms TVSPDN when M is increased.
Otherwise TVSPDN outperforms other algorithms. TVSP is
somewhat better than SPICE. As before PUMA and ML-root-
MUSIC are not as good as the others. AST does not appear
in Figure 2 as it cannot handle arbitrarily sampled data.
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Fig. 3: The CRLB of MSE of frequency estimation for dif-
ferent SNR is compared with the MSE of different algorithms
for arbitrary sampling case. The arbitrary sampled signal has
three frequencies with M = 24.
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Fig. 4: MSE of frequency estimation of two frequencies sepa-
rated by ∆. The arbitrary sampled signal has two frequencies
with M = 24 and SNR=1.5 dB..

C. Cramér-Rao lower bound (CRLB)

Figure 3 compares the MSE of different algorithms with
the associated CRB. Here K = 3, f1 = 0.496109, f2 =
0.3509603, f3 = 0.362684, a1 = 0.5ei0.39, a2 = ei0.28, a2 =
ei0.15. We generate M = 24 arbitrary samples with t1 = 0 and

tM = 80. However, unlike in above, here the sampling instants
are kept fixed, and only the noise realization varies from one
simulation to the next. We compare the numerical MSE of
different algorithms with the analytical CRB [8] in Figure 3,
where several variants of ML algorithms are considered.
ML-SPICE refers to the ML implementation initialized by
the output of TVSP, while ML-TVSPDN refers to the ML
implementation initialized by the output of TVSPDN. ML-
SPICE and ML-TVSPDN are able to achieve CRB at high
SNR. Note that at large SNR the performance of TVSP and
TVSPDN saturate. This saturation of level depends on d.
Recall that we set a desired precision level ϵ, and choose d
such that |λj | < ϵ for all j > 2d. The systematic error due
to this approximation dominates when σ2 is small causing the
performance saturation. This saturation level can be lowered
by increasing d in expense of added computational complexity.

D. Estimation of two closely spaced frequencies

Figure-4 demonstrates the capability of estimating two
closely spaced frequencies from an arbitrary sampled signal
by different algorithms. We set K = 2, a1 = a2 = 1,M =
24 and SNR=1.5 dB. The frequencies are taken as f1 =
0.351 + w1, f2 = f1 + ∆ where w1 is uniformly distributed
in [−10−3, 10−3]. The MSE results in Figure 4 plotted as
a function of ∆ clearly demonstrate the superiority of the
gridless methods in resolving closely spaced frequencies.

IV. CONCLUSIONS

We have proposed a gridless algorithm for estimating the
sparse line spectrum of a signal from arbitrarily sampled
data. In particular, we have given a gridless semidefinite
programming algorithm for computing the TVMA estimate.
This algorithm can be seen as the extension of some available
results [2], [9], [22], [27], [39]–[41] which solve the problem
when the sampling instants lie on the uniform sampling grid.
The numerical simulation study demonstrates the utility of
the proposed method. It produces satisfactory results with
small number of samples and demonstrates good resolution
performance.

To derive our algorithm we have presented few new results.
Lemma 1 gives a generic characterization of the TVMA in
terms of the cone K. This characterization might be useful in
other applications. The finite dimensional characterization of
K in Lemma 2 is an useful result as well. For instance, we
have used it in deriving the gridless version of SPICE. Finally
Theorem 3 used to prove Lemma 2 is a generalization of the
classical Caratheodory-Fejer characterization of the classical
moment problem, which might be useful in other applications.

APPENDIX

A. Proof of solvability of (1) for K = M

We show that there always exists a solution to (1) for K =
M . We let M1 = max(M, tM ). It suffices to show that there
are {ak}Mk=1 satisfying (1) with K = M if we take

f̄k = (k − 1)F/M1 − F/2, k = 0, 1, . . . ,M − 1.
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This means fk = k/M1 − 1/2. Verify that |fk| ≤ 1/2 for all
k. It is sufficient to show that the B ∈ CM×M defined as

Bjk = ei2πf̄k t̄j = ei2πfktj = ei2πtj(k/M1−1/2) = zkj e
−iπtj

is non-singular, because then B−1y gives {ak}Mk=1. Here we
write zj = ei2πtj/tM for short. Now the above implies

B = OV, O = diag{e−iπt1 , . . . , e−iπtM },

with V being a Vandermonde matrix with Vjk = zkj . Since all
tj are distinct, and tj < tM ≤ M1, we note that {zj}Mj=1 are
all distinct. Hence V is non-singular. Now since O is unitary,
B = OV is non-singular.

B. Proof of Lemma 1

We need the following result, which has been also used
in several other papers on atomic norm minimization based
methods, e.g., [9].

Proposition 1. Suppose that the LMI[
w y∗

y Q

]
≽ 0. (20)

holds. Then for every Q̄ satisfying Q = Q̄Q̄∗ there exists a
corresponding vector ȳ such that y = Q̄ȳ. In addition, the
minimum value of w subject to the LMI (20) is

y∗Q†y = min{ȳ∗ȳ : y = Q̄ȳ}.

Let w∗,Q∗ be the solutions to (11). Since Q∗ ∈ K we note
by definition of K that there are strictly positive numbers α̊k

and frequencies f̊k ∈ [−1/2, 1/2] such that

Q∗ =
P∑

k=1

α̊kΓ(f̊k) =
P∑

k=1

[γ(f̊k)
√
α̊k][γ(f̊k)

√
α̊k]

∗.

Here we don’t require the above decomposition to be unique,
and the value of P can be more than M . The above equation
can be re-written as Q∗ = Q̄Q̄∗, with

Q̄ = [ γ(f1)
√

α̊1 · · · γ(fP )
√

α̊P ]

Since w∗,Q∗ are the solutions to (11), the linear matrix
inequality (LMI) [

w∗ y∗

y Q∗

]
≽ 0

must hold. Hence Proposition 1 ensures the existence of
complex numbers {βk}Pk=1 such that

y =

P∑
k=1

γ(f̊k)βk

√
α̊k, w∗ =

P∑
k=1

|βk|2. (21)

Next we show |βk| =
√
α̊k by contradiction. Suppose |βk| ̸=√

α̊k. Take

ŵ =
P∑

k=1

|βk|
√
α̊k, Q̂ =

P∑
k=1

|βk|
√

α̊k γ(f̊k)γ
∗(f̊k),

so that Q̂ ∈ K. Verify that[
ŵ y∗

y Q̂

]
=

P∑
k=1

[
1

γ(f̊k)
βk

|βk|

]
|βk|

√
α̊k

[
1

γ(f̊k)
βk

|βk|

]∗

is non-negative definite, and thereby ŵ, Q̂ belong to the
feasible set of the optimization problem (11). In addition,

w∗− ŵ+e∗(Q∗− Q̂)e =
P∑

k=1

{α̊k + |βk|2− 2|βk|
√
α̊k} > 0,

but that leads to a contradiction since w∗,Q∗ are the solutions
to (11). Hence |βk| =

√
α̊k, and

w∗ = e∗Q∗e = (w∗ + e
∗Q∗e)/2 =

∑
k

α̊k.

Also we can write βk = α̊kϕ̊k where |ϕ̊k| = 1. Hence the first
equation in (21) gives us an atomic decomposition of y:

y =
P∑

k=1

γ(f̊k)ϕ̊kα̊k, (22)

and therefore using (10) we infer that

||y||A ≤
P∑

k=1

α̊k = (w∗ + e
∗Q∗e)/2. (23)

Now consider a solution to (10). Such a solution constitute
some P̌ positive numbers {α̌k}P̌k=1, associated frequencies
{f̌k}P̌k=1 with each f̌k ∈ [−1/2, 1/2], and unimodular complex
numbers {ϕ̌k}P̌k=1 such that

||y||A =

P̌∑
k=1

α̌k, (24)

and in addition the atomic decomposition

y =

P∑
k=1

γ(f̌k)ϕ̌kα̌k (25)

holds. Take

w̌ =
P̌∑

k=1

α̌k, Q̂ =
P∑

k=1

α̌k γ(f̌k)γ
∗(f̌k),

so that Q̌ ∈ K, and in addition[
w̌ y∗

y Q̌

]
=

P̌∑
k=1

[
1

γ(f̌k)ϕ̌k

]
α̌k

[
1

γ(f̌k)ϕ̌k

]∗
is non-negative definite. Thus w̌, Q̌ belong to the feasible
set of the optimization problem (11). Since w∗,Q∗ are the
solutions to (11) we conclude that

(w∗+e
∗Q∗e)/2 =

∑
k

α̊k ≤ (w̌+e∗Q̌e)/2 =
∑
k

α̌k = ||y||A.

This observation and (23) imply that ||y||A = (w∗ +
e∗Q∗e)/2. Consequently, it follows that

• The atomic decomposition (22) obtained from the solu-
tion of (11) gives an optimal solution to (10); and

• An atomic decomposition (25) achieving the optimality
criterion (24) gives an optimal solution w̌ and Q̌ to (11).
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C. Proof of Lemma 2

1) Some preliminary results involving PSWFs: The PSWFs
{φj}∞j=0 are real-valued, and form a complete orthonormal
basis of L2. In particular, φj(−ξ) = φj(ξ) for an even valued
j; and φj(−ξ) = −φj(ξ) for an odd j. These functions form
a T-system on [−1, 1], i.e. for any n and some distinct points
u0, u1, · · · , un in [−1, 1] the n × n matrix Φ with Φjk =
φk−1(uj−1) is nonsingular.

Fix τ ∈ [−1, 1]. Define qτ ∈ L2 such that qτ (ξ) =
exp(icξτ). Using (5) with standard inner product in L2 we
have (Er)(τ) = ⟨qτ , r⟩. Expand qτ in the ortho-basis {φj}∞j=0.
For ξ ∈ [−1, 1]

eicξτ = qτ (ξ) =

∞∑
j=0

φj(ξ) ⟨qτ , φj⟩

=
∞∑
j=0

φj(ξ) {(Eφj)(τ)} =
∞∑
j=0

λj φj(ξ) φj(τ), (26)

where we use (6) in the last equality. Although (26) is infinite
series, only a finite number terms in the expansions have some
noticeable magnitude. The number of terms needed can be
found using the following result [5], [42].

Theorem 2. Given positive number ϵ there are

n = 2c/π + log{2π/(ϵ2c)− 1} log(c)/π2 +O{log(c)}

eigenvalues of E that are greater in magnitude than ϵ.

We refer the readers to [3], [5], [42] for numerical illustra-
tion of the decay phenomenon. In the implementation of our
method we set ϵ somewhat smaller than the precision of the
optimization routine used to solve the problem in Theorem
1. Our application requires n odd, i.e. n = 2d + 1 for an
appropriate d. In particular,

2d > 2c/π = 2tM (27)

for practical values of ϵ. Take any t ∈ [−tM , tM ] and f ∈
[−1/2, 1/2]. By setting τ = t/tM , ξ = 2f and using c = πtM
in (26) we have

ei2πft =
2d∑
j=0

λj φj(2f) φj(t/tM ). (28)

without any loss of precision. Let us define ψf ,ϕf ∈ C2d+1

such that

ϕf (k) = ei2πftM (k−d−1)/d, ψf (j) = λj−1φj−1(2f).

In particular, (28) gives ϕf = Φψf , ∀f ∈ [−1/2, 1/2], where
Φ ∈ R(2d+1)×(2d+1) is defined as

Φkj = φj−1((k − d− 1)/d).

Since {φj}∞j=0 forms a T-system Φ is nonsingular.

2) The main proof: Let hjl is such that hkl(j) =
φj−1((tk − tl)/tM ). Using (28), the definition of Γ, and (12)
it follows that Q ∈ K if and only if

Qjl =

∫ 1/2

−1/2

ei2πf(tj−tl) dµ(f) =

∫ 1/2

−1/2

hᵀ
jlψ(f) dµ(f)

for some positive measure µ. Substituting ψf = Φ−1ϕf this
means Q ∈ K if and only if

Qjl = h
ᵀ
jlΦ

−1[ ν−d ν−d+1 · · · νd ]ᵀ, (29)

where {νk}dk=−d are such that

[ ν−d ν−d+1 · · · νd ]ᵀ =

∫ 1/2

−1/2

ϕf dµ(f) (30)

for some positive measure µ. Substituting θ = 2πftM/d, and
denoting µ̄(θ) = µ(dθ/(2πtM )) we can rewrite (30) as

νk =

∫ θ0

−θ0

eikθ dµ̄(θ). (31)

where θ0 = πtM/d < π according to (27). Hence we can
rephrase: Q ∈ K if and only if (29) and (31) holds for some
positive measure µ̄ on [−θ0, θ0]. That ν−k = ν∗k is an obvious
requirement. It remains to prove the following result.

Theorem 3. There is a positive measure µ̄ on [−θ0, θ0], θ0 <
π satisfying (31) if and only if T ≽ 0 and W(T) ≽ 0. In
addition µ̄ is unique if and only of T is singular with rank
r ≤ d, and in that µ̄ is of the form

µ̄(θ) =
r∑

k=1

wku(θ − θk), wk > 0, θk ∈ [−θ0, θ0]

for all k = 1, 2, . . . , r.

3) Proof of Theorem 3: It is a classical result [33] that
µ̄ satisfying (30) is unique (and in that case a degenerate
positive measure) if and only if T is singular, non-negative
definite. The following therefore, gives a proof of the first
part of the Theorem 3, which essentially extends the classical
theory (valid when θ0 = π) in order to account for any θ0 < π.
We show that this can be ensured by imposing an additional
constraint W(T) ≽ 0. Denoting

ω(θ) := [ 1 e−iθ · · · e−idθ ]∗,

let V ⊂ H be the conic hull of {ω(θ)ω∗(θ) : θ ∈ [−θ0, θ0]}.
It is sufficient to show that T ∈ V if and only if T ≽ 0 and
W(T) ≽ 0.

Proposition 2. A complex vector u = zω(θ) for some real-
valued θ and some complex number z if and only if

(J2 − J1)u = i tan(θ/2)(J1 + J2)u (32)

Proof: Note that

eiθ =
eiθ/2

e−iθ/2
=

cos(θ/2) + i sin(θ/2)

cos(θ/2)− i sin(θ/2)
=

1 + i tan(θ/2)

1− i tan(θ/2)
(33)
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Now u = zω(θ) for some real-valued θ and some complex
number z if and only if J2u = J1ue

iθ, which using (33) is
equivalent to (32).

Lemma 3. If T be a (d+ 1)× (d+ 1) non-negative definite
Toeplitz matrix such that W(T) ≽ 0, then T ∈ V.

Proof: Since T is Toeplitz non-negative definite matrix it
admits a decomposition

T =

r∑
k=1

wkω(θk)ω
∗(θk) (34)

where wk > 0 for all k, and r is the rank of T. The above
decomposition is unique only if r ≤ d. The following series
of arguments holds regardless of whether r ≤ d or not. Using
Proposition 2 and (34) in the definition of W(T) we get

W(T) =
r∑

k=1

w̄k(J1 + J2)ω(θk)ω
∗(θk)(J1 + J2)

ᵀ, (35)

where
w̄k = wk{tan2(θ0/2)− tan2(θk/2)}. (36)

It is sufficient to show for any decomposition of T of the form
(34) θk ∈ [−θ0, θ0], k = 1, 2, . . . , r, and thereby T ∈ V.
We prove this by contradiction. Suppose that there is at least
one element in the set {θ1, . . . , θr} which does not belong to
[−θ0, θ0]. Without any loss of generality suppose that |θ1| >
θ0, so that

tan2(θ0/2)− tan2(θ1/2) < 0.

Consider the economy size QL factorization

(J2 + J2)[ ω(θ1) · · · ω(θr) ] = OL,

where L is an r×r lower triangular matrix, and O is a N ×r
matrix such that O∗O = I. Denote the first column of O by
q. Then

q∗{W(T)}q = q∗OLdiag{w̄1, . . . , w̄r}L∗O∗q

= [L]211w1{tan2(θ0/2)− tan2(θ1/2)} < 0. (37)

But this contradicts the assumption that W(T) ≽ 0, and the
proof is complete.

Lemma 4. If T ∈ V then T is a Toeplitz nonnegative definite
matrix such that W(T) ≽ 0.

Proof: Since T ∈ V there are θ1, θ2, . . . , θr with each
θk ∈ [−θ0, θ0] and positive numbers {wk}rk=1 such that (34)
holds. Since each ω(θk)ω

∗(θk) are positive semidefinite
Toeplitz matrices, their conic combination T is a non-negative
definite Toeplitz matrix. Using Proposition 2 equation (34)
implies (35). Since each θk ∈ [−θ0, θ0], we know w̄k ≥ 0
for all k. Then it is readily verified from (35) that W(T) is
non-negative definite.

Combining Lemma 3 and 4 we get Theorem 3.

D. Hermitian property of Q in Theorem 1

By definition Φ = [ p0 p1 · · · p2d ], where we denote

pj = [ φj(−1) φj(−1 + 1
d ) · · · φj(1− 1

d ) φj(1) ]ᵀ.

In addition, v(↕) denotes the vector v flipped upside down.
Let ν = [ ν∗d · · · ν∗1 ν0 ν1 · · · νd ]ᵀ, and q = Φ−1ν.
We first show that q(k) is real-valued when k is odd and q(k)
is purely imaginary when k is even.When j is even, φj is an
even function, and thus, p(↕)j = pj . When j is odd, φj is an
odd function, and thus, p(↕)j = −pj . Hence using ν = Φq,

ν + ν(↕) =

2d∑
j=0

{pj + p
(↕)
j }q(j + 1) = 2

d∑
j=0

p2jq(2j + 1)

ν − ν(↕) =
2d∑
j=0

{pj − p
(↕)
j }q(j + 1) = 2

d∑
j=1

p2j−1q(2j).

The PSWFs φj are all real-valued. Hence pj is real-valued.
Also, ν + ν(↕) is real-valued by construction of ν. On the
other hand, Φ is a non-singular matrix. Hence the first of above
equalities imply that Im{q(2j + 1)} = 0. Similarly, ν − ν(↕)

being imaginary, we get Re{q(2j)} = 0. Since q = Φ−1ν,
by definition of Q in Theorem 1 we note that

Qkl =

2d∑
j=0

φj((tk − tl)/tM )q(j + 1).

Since Re{q(2j)} = 0 and Im{q(2j + 1)} = 0, we have

Re(Qkl) =
d∑

j=0

φ2j((tl − tk)/tM )q(2j + 1)

Im(Qkl) = −i
d∑

j=1

φ2j−1((tl − tk)/tM )q(2j).

Since φ2j is an even function, and φ2j−1 is an odd function,
the above imply that Qlk = Q∗

kl, implying Q = Q∗.
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